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Synopsis 

The spontaneous delamination of an elastomer strip in contact on a deformable substrate 
is studied. Theoretically, the system is analysed in terms of the energy balance theory of 
fracture by the general equation G - w = w - cP(u 0 . u) ,  proposed by Maugis and Barquins in 
1978, in which G is the strain energy release rate, w the Dupre's energy of adhesion, and 0 
a dissipation function characteristic of the viscoelastic material and of the propagation in 
mode I, only depending on the temperature through the WLF shift factor u,and on the crack 
propagation speed u. It is shown that the knowledge of the function cP, which represents 
viscoelastic losses localized at the crack tip, allows one to predict the kinetics of the spontaneous 
peeling and the force applied to the system. Experiments realized with two polyurethane strips 
in adhesive contact, one strip used as substrate being submitted to instantaneous or increasing 
tensile elongations, verify theoretical predictions with a reproducibility better than 3%. 

INTRODUCTION 

Most varnishes, paints, and coatings have the drawback of flaking and 
peeling off, by propagating of a crack at the interface, when the substrate 
is deformed, for instance, by thermal expansion. In order to better under- 
stand this behavior, we have set up a simple model, together with an ex- 
perimental arrangement consisting of two transparent rubber strips in 
adhesive contact, in which one strip is submitted to a fixed tensile elongation 
or to a fixed crosshead velocity. 

This problem of the failure of lap shear joints has already investigated 
by Kendall,' using an energy balance theory based on optimizing the total 
energy of the system at the equilibrium. For instance, in a test at fixed 
load conditions, the equilibrium state is defined by dU, = dUE + dUp + 
dUs = 0, where U,, UE, Up, and Us are, respectively, total energy, stored 
elastic energy, potential energy of the load, and stored elastic energy at 
the interface, and the corresponding force is the adherence force. This 
concept has been successfully applied to a number of cases such as the 
adherence force of flat punches,2 adherence force of spheres? ~ e e l i n g , ~  in- 
terfacial failure in laminates5 and composites.6 

But the energy balance theory cannot give information about the stability 
of the system that depends upon the second derivative of the total energy. 
That is the reason why Maugis and Barquins7 were led to reintroduce the 
concepts of fracture mechanics such as the strain energy release rate G 
and to study the stability according to the sign of the derivative of G. This 
approach has the advantage of enabling one to study the kinetics of crack 
propagation and to predict the evolution of the system whatever the ge- 
ometry of contact and loading conditions. 
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The purpose of this paper is to show that the general equation of the 
adherence of elastomers G - w = w . @(a,  - u), where w is the Dupre's 
work of adhesion and @ a dissipation function, proposed by Maugis and 
Barquins in 1978 and verified for kinetics of adherence of spheres, of flat 
punches and peeling7-" also allows one to wholly describe the spontaneous 
peeling of rubber and to predict the time of complete delamination and the 
values of the corresponding force brought into play. 

KINETICS OF ADHERENCE 

Lately, Maugis and BarquinsI2 have shown that the contact of two elastic 
bodies can be treated as a thermodynamic problem. For instance, let us 
consider two elastic solids in contact over an area A under a load P cor- 
responding to an elastic displacement 6. The variation of the Helmotz free 
energy of this system, neglecting thermal effect, is dF = P d6 + (G - w) 
dA, where G is given by (a U,/aA), and w is defined from the surface and 
interface energies of solids 1 and 2 by w = y1 + yz - y12. Equilibrium at 
fixed grips conditions, corresponding to the maximum of F, is given by G 
= w (Griffith criterion). So, the relations giving the strain energy release 
rate and the elastic elongation as a function of the contact area and the 
force appear as the equations of state of the system. This equilibrium is 
stable if a G/aA is positive, unstable if negative, the elastic adherence force 
being the force corresponding to the particular case a G/  aA = 0. 

The equilibrium may be disrupted by a change in elongation. When G 
> w, the two bodies begin to separate and their separation can be seen as 
the propagation of a crack in mode I, the contact area decreasing as the 
crack advances. The difference (G - w) represents the crack extension force 
applied to the crack tip; it is the "motive" of the crack. Under this force, 
the crack takes a limiting speed u that depends on the temperature. If it 
is assumed that viscoelastic losses are proportional to w, as proposed by 
Gent and S ~ h u l t z ' ~  and Andrews and Kinloch,I4 and are only localized at 
the crack tip, one can write7 

where the second term is the viscous drag resulting from the losses limited 
to the crack tip. @ is a dimensionless function of the crack speed u and of 
the temperature through the shift factor a 0 of the William-Landel-Ferry 
tran~formation.'~ This function @ is a characteristic of the viscoelastic ma- 
terial for the propagation in mode I, independent of the geometry of contact 
and the loading system. Knowledge of the function @ makes it possible to 
predict the evolution of the contact area in all circumstances. The prediction 
assumes only that rupture is adhesive, i.e., that the crack propagates at 
the interface and the application of eq. (1) implies that gross displacements 
are purely elastic, with G computed from the relaxed elastic modulus Eo, 
and that the frequency dependence of E only appears at the crack tip where 
deformation velocities are high. The loss factor E"/E' ( E  and E" being the 
real and imaginary components of E )  and its frequency dependence are 
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taken into account in the function @.16 The interest of eq. (1) is that surface 
properties (w) and viscoelastic losses (@) are clearly decoupled from the 
elastic properties, geometry, and loading conditions that only appear in G. 

Adherence experiments carried out with a glass ball or a flat glass punch 
in contact with a polyurethane surface in push on-pull off tests, at fixed 
load,' cyclic load: fixed displacement,1° or fixed crosshead velocity: verify 
theoretical predictions. Whatever the intrinsic properties (surface and vis- 
coelastic) of tested solids or such experimental parameters (geometry of 
contact, speed of separation, temperature, relative humidity, initial applied 
force which presses together the two solids and duration of this initial 
contact), all experimental points fall on a master curve W u ) .  It is shown 
that over a large range of speeds of propagation (lo-' - lo4 pmls), the 
function @ may be represented by the power function @(ae.  u )  = a(@ . un, 
where a(@ is a parameter depending on the temperature8 and n takes the 
value 0.6 for poly-urethane. Moreover, in eq. (11, the multiplicative effect 
of w on viscoelastic losses, can only arise if the interface is itself capable 
of withstanding stress,13 has been confirmed by cylinder rolling experiments 
in an atmosphere of variable humidity.17J8 One can point out that the model 
proposed by Greenwood and Johnson,lg for a three-element viscoelastic ma- 
terial, gives a variation of G with the 05th power of the crack speed which 
is in reasonably good agreement with our experimental value (n = 0.6). 

In this paper, we show that eq. (1) enables one to study the kinetics of 
the spontaneous peeling of rubber, if a fixed tensile elongation or a fixed 
crosshead velocity is imposed on the elastic substrate. 

SPONTANEOUS PEELING 

Let us consider [Fig. l(a)] a long lap shear joint, similar to that investi- 
gated by Kendall,' made by contacting two smooth strips of elastomer, with 
the same Young modulus E, the same width b, and thickness h, in adhesive 
contact on to an area A = bL, without initial prestress. If an adequate 
tensile elongation 6 is imposed to the substrate, cracks appear at the free 
ends of the upper strip and propagate inwards along the interface [Fig. 
l(b)], the spontaneous delamination being able to cause complete loss of 
contact. If, at a given time, x is the length of one relaxed peeled part of 
the upper strip, a simple application of Hooke's law to the double layer of 
length I and to the two strained free ends of the substrate allows one to 
calculate the force applied to the system by 

w4 ' -L,"i 

a t '  '--p - Xh 

' I  

+6$ 

b I-% 

;- 1 -; .i, 
Cr& t i  

Fig. 1. Geometry of the first adhesive joint tested. 
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2 bEH6 
L + 4u f 2x 

F =  

1 
The corresponding stored elastic energy U - -F6 is 

E - 2  

bEh 62 
L + 4u + 2x 

U E  = 

so that the strain energy release rate can be written as 

L + 4u + 2x 
G = Eh 

Hence the equilibrium relationship is 

(3) 

6 =l/f 
L + 4u + 2x (4) 

As (aGIaA), > 0, this equilibrium is stable, i.e., if a fluctuation decreases 
the contact area A, G incrementally decreases, and one has G < w, the 
crack recedes to its equilibrium position. It can only advance if the tensile 
elongation 6 is varied bringing back G to the value w: one is dealing with 
the controlled rupture of an adhesive joint. 

As soon as an instantaneous tensile elongation greater than 6 given by 
eq. (41, with x = 0, is applied to the substrate, G takes the corresponding 
value given by eq. (3) and immediately cracks are initiated at the extremities 
of the upper strip, and propagate in the interface [Fig. l(b)]. Then, x in- 
creases and G continuously decreases with time. Figure 2 shows the relation 
between G and x for different instantaneous elongations in reduced coor- 
dinates, for the practical case u = 0. So, the minimum value of the uniaxial 

Fig. 2. Strain energy release rate versus length of the relaxed peeled strip, for various 
instantaneous tensile elongations, in reduced coordinates. 
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Fig. 3. Minimum and critical value of the instantaneous uniaxial deformation vs. w, to 
observe initiation of the crack and complete rupture of the contact, respectively, in reduced 
coordinates. 

strain to observe the initiation of the crack can be deduced from eq. (41, 
and it is given by q = v'Ur/Eh. 

Figure 2 allows one to see that the propagation can lead to an equilibrium 
state if G takes the value w before cracks reach the central part of the 
substrate, i.e., x < L / 2 ,  or to the complete rupture of thecontact if G > 
w with x = L / 2 .  So, it is possible to define a new critical value of 6 cor- 
responding to this borderline base. For the practical situation u = 0, one 
can deduce from eq. (41, with x = L / 2 ,  the minimum value of the instan- 
taneous uniaxial deformation c2 = 2/4w/Eh necessary to provoke the com- 
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plete rupture of the contact. Figure 3 shows the variation of el and e2 with 
the thermodynamic work of adhesion w, in reduced coordinates. 

Similar considerations can be formulated for other types of adhesive 
joints. These models, experimentally tested, are described in Table I, with 
the corresponding formulae for the strain energy release rates, forces, and 
critical instantaneous deformation values el and e2. 

The application of Hooke's law to the system also enables one to write 
the relation including all the geometrical parameters, so that the length x 
of each peeled strip is given by the positive root of the equation: 

4x2  + 2 ~ ( 1 +  4~ + 6) - L(L + 4~ + 6 - I )  + 4 u l =  0 (5) 

of which we can deduce the crack speed at fixed elongation 6, 

(6) 
1 L +  4 u +  2x dl 
2 '  1 + 41.4 + 4x + S ' d t  - -  

dx 
dt 
_ _  - 

and at fixed crosshead velocity S ,  

(7) 
dx 
dt 

-(dl/dt)(L + 4u + 2x) + &(L - 2x1 
2(1+ 4u + 4x + 6) 

_ -  - 

the variation with time of the length I of the adhesive part of the joint, dl/  
dt, being determinated by the slope in every points of experimental curves 
&t).  

So, the strain energy release rate, given by eq. (31, with x deduced from 
eq. (51, can be related to the crack speed dx/dt assessed by eq. (6) or (7) 
following the experimental procedure, in order to verify eq. (11, previously 
proposed and experienced in normal approach measurements of adherence 
and peeling.7-12J8 

EXPERIMENTAL METHOD 

The viscoelastic material chosen was an optically smooth polyurethane, 
recommended for dynamic studies in photoelasticity (PSM4 Vishay, with 
E = 3.6 MPa), similar to that used for previous experiments on the kinetics 
of adherence of glass spheres, or glass flat punches and for peeling tests.7 
It was delivered as plates of thicknesses h = 3.175 mm and 6.350 mm. The 
surfaces were wiped with an alcohol-soaked rag, dried with warm air and 
left, sheltered from dust, for 30 min for the equilibrium with room tem- 
perature to be reached. Then, two strips with various lengths L and widths 
b varying in the range 5-20 cm and 5-20 mm, respectively, were gently 
superimposed, and they adhered under the only molecular attraction forces, 
without additional adhesive. In order to avoid the dwell time effect,20 strips 
were coupled during the same contact duration 30 min, for any set of 
experiment. Moreover, temperature (23°C) and humidity (84%) were kept 
constant. In these conditions, the reproducibility is better than 3%. 

Experiments at fixed grips conditions and at fixed crosshead velocity were 
carried out using a tensile machine (Instron 1026) that enables one to im- 
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11 

time, min 
Fig. 4. Variation with time of the contact length between two strips of polyurethane, for 

various instantaneous tensile elongations applied to the substrate. L = 100 mm, b = 10 mm, 
h = 3.175 mm, u = 1 mm. 

pose, with help of two gear boxes, speeds 6 varying in the range 0.5-500 
mm/min, and to measure forces up to 50 N. For a quantitative evaluation 
of the crack speed during the delamination, a 16-mm camera recorded the 
experimental arrangement at a rate varying from 10 to 50 frames/s; the 
frames were then enlarged and the distance I between the two crack tips 
were measured, and the peel angle q, also [Fig. Ub)]. 

EXPERIMENTAL RESULTS AND DISCUSSION 

In a first set of experiments, we have studied the kinetics of spontaneous 
peeling at fixed tensile elongation. The time necessary to impose this con- 
stant elongation was in any case inferior to 1 s, a very short duration with 
respect to the rupture time. Figure 4 shows the variation with time of the 
distance I between the two crack tips (contact length) for different "in- 
stantaneous" tensile elongations 6 applied to a strip 100 mm long, 10 mm 
wide, 3.175 mm thick, and with u = 1 mm. Experiments were stopped after 
11 min due to the limited film capacity of the camera. 

The important and fortunate observation, for a good validity of the model, 
was that, at a given time, the two cracks exactly propagate with the same 
speed, i.e., that the experimental arrangement remained symmetrical up 
to the complete rupture of contact, when it was observed. 

Corresponding values of the strain energy release rate and the associated 
crack speed, calculated by eq. (3) and (61, respectively, are represented on 
Figure 5 on log-log coordinates. All the points fall on the same straight 
line that corroborates the previous findings? and consequently confirms eq. 
(1) in which the function Q, for polyurethane samples varies as the 0.6th 
power of the crack speed. Taking into account a(@ = 4.75 x lo4 SI units: 
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Fig. 5. Strain energy release rate versus crack speed for strips of polyurethane in adhesive 
contact, for various instantaneous tensile elongations and cross head velocities. 

corresponding to the room temperature 23”C, and data from Figure 5, the 
mean value of DuprB’s work of adhesion that can be calculated by eq. (1) 
is w = 41 mJ/m2 (+ 1 mJ/m2), a fairly low value due to the high humidity 
ratio.l7Js This value is used as reference w *  on Figures 2 and 3 and cor- 
responds to N 1.9 x and e2 N 3.8 X 

Figure 6 shows variations recorded by the tensile machine of the force 
to which the experimental arrangement is subjected with time, in the same 
conditions as in Figure 4. As expected, an increasing in tensile elongation 
provokes an proportional increasing in the initial force, and the time re- 
quired to observe complete delamination is shorter, the force then remain- 
ing constant. 

2o r 

t - 
1 -- 

I I I I 1 
0 1 2 3 4 5 6 7 8 9 1 0 1 1  

time ,min 
Fig. 6. Variation with time of the force applied to the system in the same conditions as 

in Figure 4. Experimental results and corresponding computed curves (heavy lines): L = 100 
mm, b = 10 mm, h = 3.175 mm, u = 1 mm. 
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By numerical integration of the general equation for the adherence of 
viscoelastic materials [eq. (l)], taking into account eqs. (2) and (3) and the 
variation of $ with the 0.6th power of the crack speed, it is possible to 
predict variations of the force during the spontaneous peeling. The com- 
puted curves (heavy lines of Fig. 6) are in quite good agreement with ex- 
perimental results. It can be pointed out that the small vertical shift visible 
on some curves arises from a weak variation of w with respect to the mean 
value used for calculations. Moreover, the light divergences observed for 
long times are probably due to dwell time effect resulting from the relax- 
ation of stresses stored in the roughnesses at the interface.20 

In a second set of experiments, the lower strip of polyurethane 
used as elastic substrate, was submitted to various fixed crosshead velocities. 
Variations of the contact length I vs. time are shown in Figure 7. The 
kinetics of separation is less easy to interpret as at fixed tensile elongation 
due to the competition between increasing elongation 6 at constant contact 
length I and decreasing I at constant 6 for increasing G: 

At the beginning, as long as the strain energy release rate remains smaller 
than the thermodynamic work of adhesion w, the cracks cannot start and 
obviously the contact length I increases with 6. Moreover, when G just 
becomes slightly greater than w, the cracks begin to propagate with a very 
slow speed so that the contact length increases for a short time and then 
decreases until complete delamination is reached. 

time , min 
Fig. 7. Variation with time of the contact length between two strips of polyurethane, for 

various crosshead velocities imposed to the substrate: L = 100 mm, b = 10 mm, h = 3.175 
mm, u = 1 mm. 
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Fig. 8. Variation with time of the force applied to the system in the same conditions as 
in Figure 7. Experimental results and corresponding computed curves (heavy lines): L = 100 
mm, b = 10 mm, h = 3.175 mm, u = 1 mm. 

Corresponding recorded forces are shown on Figure 8. Due to the lower 
variation of the crack speed just before the total rupture of the contact, the 
force is seen to increase less rapidly. Thereafter, as expected, the force 
increases linearly with time and corresponds to the continuous elongation 
of the substrate. Computed curves (heavy lines) obtained by numerical in- 
tegration of eq. (1) and using eq. (2) and (7) are in good agreement with 
experimental results. 

Relations between the strain energy release rate and the associated crack 
speed are given in Figure 5. They wholly confirm the variation of the 
function with the 0.6th power of the propagation speed. 

30 - 
z 
6 2 5  
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2 
Ic 

20 - 

15 - 

10 - 

I 

0 50  loo 150 
time, s 

Fig. 9. Force versus time, for various contact widths. Experimental results and correspond- 
ing computed curves (heavy lines); 6 = 5 mm/min, L = 100 mm, h = 3.175 mm, u = 1 mm. 
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0 1 2 3 4 5 
time , min 

Fig. 10. Force versus time, for various initial contact lengths. Experimental results and 
corresponding computed curves (heavy lines): 6 = 5 mm/min, b = 10 mm, h = 3.175 mm, u 
= 1 m. 

In order to further verify the good validity of the model, influences of 
the initial contact length L, of the width b, and of the free end length u of 
the elastic substrate have been studied, when the latter is submitted to the 
same fixed crosshead velocity d = 5 mm/min. Experimental results and 
corresponding computed curves are compared in Figures 9, 10, and 11. As 
expected, a change in contact width b, all other geometrical parameters 
remaining constant, does not alter the kinetics of propagation; indeed, the 
curves Z(t) and hence x ( t )  are all superimposed, so that at every time the 
recorded force is proportional to the width b [eq. (2)] as shown on the Figure 

time , min 
Fig. 11. Force versus time, for various initial lengths of the free ends of the substrate. 

Experimental results and corresponding computed curves (heavy lines): 6 = 5 mm/min, L = 
100 mm, h = 3.175 mm, b = 10 mm. 
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Fig. 12. Schematical geometry of the peeled strip in the vicinity of the crack tip. 

9, and the complete delamination is observed after the same duration. On 
the other hand, an increase in the initial contact length L delays the ap- 
pearance of the total rupture of contact, and if u can be neglected with 
respect to L, the corresponding force is constant, as shown in Figure 10, 
and the time to observe complete rupture is proportional to the initial 
contact length. Lastly, Figure 11 confirms that the length of the free ends 
of the substrate plays a considerable part in the kinetics of propagation but 
only a small part in the force applied to the system. 

During crack propagation, the spontaneous peeling angle was measured, 
and a slow increase with time was observed. Simple geometrical consid- 
erations associated with the incompressible character of the tested material 
enable one to relate the value of angle to the uniaxial strain in the adhering 
upper strip (Fig. 12). Indeed, to a first approximation, the flaking of the 
peeled strip can be easily ascribed to the variation of the thickness between 
the two adhering and relaxed states, and we can write cos r )  = h'/h = 1 
- ~ / 2 ,  hence, if E is not too high, r )  N ~ ' 2 .  Although, the substrate is not 
a rigid body, and is not perfectly plane in the vicinity of contact zone due 
to the asymmetry of the experimental arrangement, measurements of peel- 
ing angle confirm the prediction with an accuracy of better than 8%. 

The other types of models described in Table I have been tested at fixed 
tensile elongation as at fixed crosshead velocity. For instance, Figure 13 
shows the fifth geometry of Table I during crack propagation. This figure 
proves that the system remains perfectly symmetrical until the complete 
rupture without perceivable influence on peeling angles of weights of al- 
ready detached portions. Corresponding relations between strain energy 
release rate and crack speed are given in Figure 5. As expected, all the 
results confirm previous findings whatever the geometry of the adhesive 
joint. So it is proved that the knowledge of the function Q, allows one to 
predict the evolution of the system, among other things, the force involved 
and contact duration before rupture. For instance, Figure 14 shows the good 
agreement between experimental results and theoretical curves (heavy 
lines) obtained with the six arrangements studied in a same test at fixed 
crosshead velocity. 

So we think that, due to the elementary nature of the model, and also 
its sound validity, it may be suitable for solving certain practical problems 
such as the ability of varnishes, paints, and coatings to adhere on deformable 
substrates. 

CONCLUSION 
The concepts of fracture mechanics may be used to study the kinetics of 

the spontaneous peeling of a rubber strip in adhesive contact with an elastic 
substrate, using the general equation 
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Fig. 13. View of the fifth geometry during crack propagation (L  = 100 mm, b = 10 mm, 
h = 3.175 mm, u = 0, 6 = 5 mm/min) 

G - w = w - @(ao - v )  
where G is the strain energy release rate, w is Dupre’s work of adhesion, 
and @ is a dissipation function characteristic of the viscoelastic material 
for the crack propagation in mode I. This function @ depends only on the 
temperature, through the term a. (William-Landel-Ferry factor) and on 
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Fig. 14. Comparison for the same crosshead velocity between the s+ geometries tested. 
Experimental results and corresponding computed curves (heavy lines): 6 = 5 mm/min, L= 
100 mm, h = 3.175 mm, b = 10 mm, u = 0. 
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the speed u of the crack propagating at the interface, and is consequently 
independent of the geometry and of the type of test. Experiments carried 
out with various arrangements at fixed tensile elongations and at fixed 
crosshead velocities show that, over a large range of speeds of propagation, 
the function @ may be represented by the power function @(u 0 u )  = a(0) . un,  with n = 0.6 for polyurethane tested. This result corroborates previous 
findings concerning the kinetics of adherence between a spherical or flat 
rigid punch and the same rubberlike material. 

Knowledge of the function @ thus makes it possible to predict the kinetics 
of propagation in all particular cases provided that the elongations remain 
purely elastic (with viscoelastic losses being left localized at the crack tip) 
and that the rupture is the rupture of an adhesive joint (with propagation 
of the crack in the interface). Particularly, the differential equation above 
may be used to predict: the time of spontaneous delamination as a function 
of fixed tensile elongation or crosshead velocity, the size of the contact area 
and the force brought into play at any time during peeling. Experimental 
results verify theoretical predictions with an accuracy better than 3%. 

The author would like to thank the Direction des Recherches, Essais et techniques, for the 
financial support given to this work (DRET Contract No. 83-1033). 
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